Math 25
Fall 2017
Lecture 9

Sequences it Series
Recall what a function is:
It is a relation that for every input values, there is only one output Value.
Notation $f(x)$
x input \rightarrow Domain
$f(x)$ output \rightarrow Range

$$
\begin{array}{ll}
\text { Ex: } & f(x)=3 x-2 \\
& f(1)=3(1)-2=1 \\
& f(2)=3(2)-2=4 \\
& f(3)=3(3)-2=7
\end{array}
$$

If we list the output $1,4,7, \ldots$.

This is a Sequence.

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(1)=1^{2}=1 \\
& f(2)=2^{2}=4 \\
& f(3)=3^{2}=9 \\
& \vdots
\end{aligned}
$$

as a sequence $\Rightarrow \quad 1,4,9, \ldots$

So Sequence is a special function Such that its domain is the set of natural numbers $1,2,3, \ldots$

Traditionally speaking, Sequence is in the form of

$$
\left\{a_{n}\right\} \quad \begin{aligned}
& \text { where } a_{n}=f(n) \\
& a_{1}
\end{aligned} \quad \text { first elemer }
$$

$a_{1} \quad$ first element $=f(1)$
a_{2} Second element $=f(2)$
a_{3} third element $=f(3)$
find the first 4 terms of the sequence

$$
\begin{array}{lll}
\left\{n^{2}-2 n\right\} & \begin{array}{l}
a_{n}=n^{2}-2 n \\
a_{1}=1^{2}-2(1)=-1
\end{array} & a_{3}=3^{2}-2(3)=3 \\
\{-1,0,3,8, \ldots\} & a_{4}=4^{2}-2(4)=8 \\
a_{2}=2^{2}-2(2)=0
\end{array}
$$

$n!n$-factorial

$$
\begin{aligned}
& n!=n \cdot(n-1) \cdot(n-2) \cdot(n-3) \cdot \cdots \cdot 3 \cdot 2 \cdot 1 \\
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
& 0!=1 \quad \text { By definition }
\end{aligned}
$$

find the first 5 terms of the sequence

$$
\left\{\begin{array}{rrr}
\{n!-1\} & \begin{array}{ll}
a_{n}=n!-1 & a_{4}=4!-1 \\
a_{1}=1!-1=1-1=0 & =24-1=23
\end{array} \\
\{0,1,5,23,119, \ldots\}\} \begin{array}{lr}
a_{2}=2!-1=2-1=1 \\
a_{3}=3!-1=6-1=5
\end{array} & a_{5}=5!-1=120-1
\end{array}\right.
$$

$$
a_{1}=1 \quad a_{2}=1, \quad a_{n+2}=a_{n+1}+a_{n}
$$

Any term is the sum of two previous terms

$$
\begin{array}{llc}
1,1,2,3,5,8,13, \ldots & \\
\begin{array}{lll}
a_{n+1}=n a_{n} & , a_{1}=2 & a_{5}=4 a_{4} \\
a_{2}=1 a_{1} & a_{2}=1 \cdot 2=2 & =48 \\
a_{3}=2 a_{2} & a_{3}=2 \cdot 2=4 & \vdots \\
a_{4}=3 a_{3} & a_{4}=3 \cdot 4=12 &
\end{array} .
\end{array}
$$

Find the first 4 terms of

$$
\begin{aligned}
& \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} \\
& \left\{\frac{1}{1+1}, \frac{2}{2+1}, \frac{3}{3+1}, \frac{4}{4+1}, \ldots\right\} \\
& =\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots .\right\} \\
& =\{.5, . \overline{6}, .75, .8, \ldots
\end{aligned}
$$

what do You think this sequence appruades? $\rightarrow 1$

These are examples of Series.

Series are the sum of terms of a
Sequence.

$$
\sum_{n=1}^{k} a_{n}
$$

$$
\text { find } \sum_{n=1}^{4}\left(n^{3}-n\right)
$$

$$
=\left(1^{3}-1\right)+\left(2^{3}-2\right)+\left(3^{3}-3\right)+\left(4^{3}-4\right)
$$

$$
=0+6+24+60
$$

$$
=90
$$

$$
\begin{aligned}
& \sum \text { Summation } \\
& \sum_{n=1}^{k} \text { Summation } \sum_{n=1}^{4} n^{2} \\
& =1^{2}+2^{2}+3^{2}+4^{2}=30 \\
& \begin{array}{r}
\sum_{n=1}^{4}(3 n-1)=(3 \cdot 1-1)+(3 \cdot 2-1)+(3 \cdot 3-1)+(3 \cdot 4-1) \\
n=1 \quad n=2 \quad n=3 \quad n=4
\end{array} \\
& =2+5+8+11=26
\end{aligned}
$$

find $\sum_{n=1}^{99} \frac{1}{n^{2}+n}$
Do Partial fraction decomposition on $\frac{1}{n^{2}+n}$.

$$
\frac{1}{n^{2}+n}=\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}
$$

we should get $1=A(n+1)+B n$
$\begin{aligned} & \text { If } n=0 \rightarrow A=1 \\ & \text { If } n=-1 \rightarrow B=-1\end{aligned} \Rightarrow \frac{1}{n^{2}+n}=\frac{1}{n}=\frac{1}{n+1}$

$$
\begin{aligned}
& \text { So } \sum_{n=1}^{99} \frac{1}{n^{2}+n}=\sum_{n=1}^{99}\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{y}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{y}{x 9}-\frac{1}{100}\right) \\
& n=1 \\
& =1-\frac{1}{n=3} \\
& =100 \\
& =\frac{100-1}{100}=\frac{99}{100}
\end{aligned}
$$

what do You think about

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+n} \text { approaches? } \rightarrow 1
$$

Back to sequences

1) Arith metic $\Rightarrow a_{1}, a_{1}+d, a_{1}+2 d+a_{1}+3 d_{1}, \cdots$
2) Geometric $\Rightarrow a_{1}, a_{1} r, a_{1} r^{2}, a_{1} r^{3}, \ldots$

Arithmetic sequence
a_{1} First Term
an nth term
d Common Difference
Sn Sum of the first n terms

Given $a_{1}=5, d=3$, Arithmetic Sequence
find

1) the first 4 terms

$$
\begin{aligned}
& \quad 5,5+3,5+3+3,5+3+3+3 \\
& =5,5+1 \cdot 3,5+2 \cdot 3,5+3 \cdot 3 \\
& \quad=5,8,11,14, \ldots \\
& S_{4} \\
& S_{4}=
\end{aligned}
$$

$$
\begin{aligned}
& a_{1} \\
& a_{2}=a_{1}+d \\
& a_{3}=a_{1}+d+d=a_{1}+2 d \\
& a_{4}=a_{1}+2 d+d=a_{1}+3 d \\
& a_{5}=a_{1}+3 d+d=a_{1}+4 d \\
& \vdots \\
& a_{n}=a_{1}+(n-1) d
\end{aligned}
$$

$$
\begin{aligned}
& u_{n}=u_{1}+(n-1) a_{100}=a_{1}+99 d^{2} \\
& \text { For last example } \quad a_{1}
\end{aligned}
$$

Consider the sequence below

$$
\begin{aligned}
& 2,7,12,17,22, \ldots \\
& a_{1}=2, d=5 \\
& \text { find } a_{20} .
\end{aligned} \begin{aligned}
a_{n} & =a_{1}+(x-1) d \\
&
\end{aligned}
$$

find the sum below

$$
1+2+3+4+\cdots+\cdots+98+99+100
$$

$$
\begin{gathered}
1+2+3+\ldots \ldots+\cdots+99+100 \\
100+99+98+\ldots \ldots+3+1 \\
101+101+101+\ldots \ldots+101+101+101
\end{gathered}
$$

So we have 100 of these 101 's. $\begin{aligned} & \begin{array}{c}\text { Since we } \\ \text { doubled up, }\end{array} \\ & 2\end{aligned} \frac{100(101)}{2}=50(101)$ we divide byz $=5050$

Karl Gauss

$$
\begin{aligned}
& a_{1}+a_{1}+d+a_{1}+2 d+\cdots \cdots \cdots+a_{1}+(n-1) d \\
& a_{1}+(n-1) d+a_{1}+(n-2) d+\cdots \cdots+a_{1}
\end{aligned}
$$

$$
\underbrace{2 a_{1}+(n-1) d+2 a_{1}+(n-1) d+\cdots+2 a_{1}+(n-1) d}_{n \text { of these }}
$$

$$
S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \quad S_{n}=\frac{n}{2}\left[a_{1}+a_{n}\right]
$$

Sum of the first n terms

$$
\begin{aligned}
& 20+24+28+32+\cdots \cdot \\
& a_{1}=20 \\
& d=4
\end{aligned}
$$

find a_{25}
we know

$$
\begin{aligned}
& a_{25}=4(25)+16 \\
& a_{25}=116
\end{aligned}
$$

$$
a_{n}=a_{1}+(n-1) d
$$

$$
a_{n}=20+(n-1) \cdot 4
$$

$$
a_{n}=20+4 x-4
$$

$$
a_{n}=4 n+16
$$

find S_{25}
we know

$$
\begin{aligned}
& S_{n}=2 n[n+9] \\
& S_{25}=2 \cdot 25[25+9] \\
&=50(34) \\
& S_{25}=1700
\end{aligned} \quad \begin{aligned}
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
& =\frac{n}{2}[40+4 n-4] \\
& =\frac{n}{2}[4 n+36] \\
& =\frac{n}{2} \cdot 4[n+9] \\
S_{n} & =\frac{n}{2}[2 \cdot 20+(n-1) 4] \\
&
\end{aligned} \quad \begin{aligned}
& n+9]
\end{aligned}
$$

$$
1+2+4+16+\cdots
$$ For 64 Years.

$$
\sqrt{3}
$$

$$
\operatorname{Jan} 1 \rightarrow 1 \varnothing
$$

8×8

$$
\operatorname{jan} 2 \rightarrow 2 \downarrow
$$

making a new Year resolution

How much $\$$ do You have by Feb. 1? $\operatorname{Jan} 31 \rightarrow$:

Geometric Sequences

$$
\begin{aligned}
& 3,6, \quad 12, \quad 24,48, \ldots \\
& a_{1}=3, \quad r=2
\end{aligned}
$$

Common ratio

$$
3,3.2,3.2^{2}, 3.2^{3}, 3.2^{4}, 3.2^{5}, \ldots .
$$

find the cloth term $\Rightarrow a_{10}$

$$
a_{10}=3 \cdot 2^{10-1}=3 \cdot 2^{9}=1536
$$

$$
a_{1}, a_{1} r, a_{1} r^{2}, a_{1} r^{3}, \ldots \underbrace{a_{1} r^{n-1}}_{4}
$$

Use a geometric sequence nth term with $a_{1}=1024$, and $r=\frac{1}{2}$ write the first 4 terms.

$$
1024,512,256,128
$$

find a_{8}

$$
\begin{aligned}
a_{8} & =a_{1} \cdot r \\
& =1024 \cdot\left(\frac{1}{2}\right)^{7}=8
\end{aligned}
$$

$S_{n}=$ Sum of the first n terms
For Arithmetic Sequence

$$
S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
$$

for Geometric Sequence

$$
S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}
$$

So Save 14 on Jan 1, double it for Jan 2 double that for Jan 3, How much in tatar be end of Jan?

$$
\begin{aligned}
& a_{1}=1 \\
& r=2 \\
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \\
& n=31 \quad S_{31}=\frac{1\left(1-2^{31}\right)}{1-2} \\
& =\frac{1-2^{31}}{-1}=2^{31}-1 \\
& S_{31}=2147483647 \$ \\
& \$ 21474,836.47
\end{aligned}
$$

